Hox control of morphogen mobility and organ development through regulation of glypican expression.
نویسندگان
چکیده
Animal bodies are composed of structures that vary in size and shape within and between species. Selector genes generate these differences by altering the expression of effector genes whose identities are largely unknown. Prime candidates for such effector genes are components of morphogen signaling pathways, which control growth and patterning during development. Here we show that in Drosophila the Hox selector gene Ultrabithorax (Ubx) modulates morphogen signaling in the haltere through transcriptional regulation of the glypican dally. Ubx, in combination with the posterior selector gene engrailed (en), represses dally expression in the posterior (P) compartment of the haltere. Compared with the serially homologous wing, where Ubx is not expressed, low levels of posterior dally in the haltere contribute to a reduced P compartment size and an overall smaller appendage size. We also show that one molecular consequence of dally repression in the posterior haltere is to reduce Dpp diffusion into and through the P compartment. Our results suggest that Dpp mobility is biased towards cells with higher levels of Dally and that selector genes modulate organ development by regulating glypican levels.
منابع مشابه
Hox control of organ size by regulation of morphogen production and mobility.
Selector genes modify developmental pathways to sculpt animal body parts. Although body parts differ in size, the ways in which selector genes create size differences are unknown. We have studied how the Drosophila Hox gene Ultrabithorax (Ubx) limits the size of the haltere, which, by the end of larval development, has approximately fivefold fewer cells than the wing. We find that Ubx controls ...
متن کاملGlypicans regulate JAK/STAT signaling and distribution of the Unpaired morphogen.
In Drosophila, ligands of the Unpaired (Upd) family activate the Janus kinase/signal transducers and activators of transcription (JAK/STAT) pathway. The JAK/STAT pathway controls many developmental events, including multiple functions in the ovary. These include an early role in the germarium for specification of stalk cells and a later role in the vitellarium to pattern the follicular epitheli...
متن کاملdally, a Drosophila glypican, controls cellular responses to the TGF-beta-related morphogen, Dpp.
Decapentaplegic (Dpp) is a Drosophila member of the Transforming Growth Factor-beta (TGF-beta)/Bone Morphogenetic Protein (BMP) superfamily of growth factors. Dpp serves as a classical morphogen, where concentration gradients of this secreted factor control patterning over many cell dimensions. Regulating the level of Dpp signaling is therefore critical to its function during development. One t...
متن کاملdally, a Drosophila glypican, controls cellular responses to the TGF-β-related morphogen, Dpp
Decapentaplegic (Dpp) is a Drosophila member of the Transforming Growth Factor-β (TGF-β)/Bone Morphogenetic Protein (BMP) superfamily of growth factors. Dpp serves as a classical morphogen, where concentration gradients of this secreted factor control patterning over many cell dimensions. Regulating the level of Dpp signaling is therefore critical to its function during development. One type of...
متن کاملPopulation Spatial Mobility: Monitoring, Methodology of Formation, Features of Regulation
Spatial mobility is a topical concept of analytical migration science, which makes it possible to assess the desires, readiness and capabilities of the population to move over certain distances and time. In the management of spatial mobility assessment requires the organization of systematic monitoring, which includes identifying the mobility potential in spatial and temporal interpretation, th...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Development
دوره 134 2 شماره
صفحات -
تاریخ انتشار 2007